skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Delgado, Robert"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Infrared spectroscopy has found wide applications in the analysis of biological materials. A more recent development is the use of engineered nanostructures – plasmonic metasurfaces – as substrates for metasurface-enhanced infrared reflection spectroscopy (MEIRS). Here, we demonstrate that strong field enhancement from plasmonic metasurfaces enables the use of MEIRS as a highly informative analytic technique for real-time monitoring of cells. By exposing live cells cultured on a plasmonic metasurface to chemical compounds, we show that MEIRS can be used as a label-free phenotypic assay for detecting multiple cellular responses to external stimuli: changes in cell morphology, adhesion, and lipid composition of the cellular membrane, as well as intracellular signaling. Using a focal plane array detection system, we show that MEIRS also enables spectro-chemical imaging at the single-cell level. The described metasurface-based all-optical sensor opens the way to a scalable, high-throughput spectroscopic assay for live cells. 
    more » « less
  2. Surface-enhanced infrared absorption (SEIRA) based on top-down fabricated nanostructures such as nanoantennas and metasurfaces has attracted much attention in recent years. These plasmonic resonant nanostructures can enhance the IR absorption signal of nearby molecules through its nearfield enhancement and have been shown to be able to detect adsorbed monolayers of proteins and lipids through their IR absorption spectra. Here, we demonstrate the continuous monitoring of cellular responses to stimuli using metasurface-enhanced infrared spectroscopy (MEIRS). A431 cells are seeded on a gold plasmonic metasurface fabricated on CaF2 substrate. Continuous monitoring is made possible by integrating the metasurface with a flow chamber, and the IR absorption spectra of the attached cells are measured in reflectance mode under continuous perfusion of cell culture medium. Scanning electron microscopy (SEM) revealed that the cells preferentially adhere to gold surfaces rather than CaF2 surfaces, suggesting that the IR signal measured through MEIRS is highly sensitive to the cells’ attachment and interaction with the gold metasurface. We have monitored the effect of methyl-beta-cyclodextrin, a cholesterol-depleting compound, on A431 cells. Principal component analysis highlighted the complex and subtle spectral changes of the cells. Keywords: MIR spectroscopy, surface-enhanced infrared absorption, metasurface, metasurface enhanced infrared absorption, MEIRS, cell adhesion, methyl-beta-cyclodextrin, cholesterol 
    more » « less